LIST OF FIGURES

Figure 1.1.1 T	he Central and Southern Florida Region	2
Figure 1.1.2 T	he Central and Southern Florida Project Flow Characterization	3
Figure 1.2.1 E	volution of the South Florida Water Management Model	6
Figure 1.3.1 S	outh Florida Water Management Model Boundaries	.8
Figure 1.3.2 G	eneral Hydrologic Processes in the South Florida Water Management Model	10
Figure 1.3.3 S	implified Flowchart for the South Florida Water Management Model v5.5	11
Figure 1.3.4 T	he South Florida Water Management Modeling System	15
Figure 1.3.5 M	Tajor Geographical Areas within the South Florida Water Management Model	16
Figure 2.1.1.1	Sources of Topography for SFWMM v5.5	19
Figure 2.1.1.2	Total Number of Data Points per SFWMM Cell for the High-Accuracy	
	Data Collection	
Figure 2.1.1.3	Total Number of Data Points per SFWMM Cell for the USGS LIDAR Data	21
	Location of Transects of Measured Subsidence in the EAA	
	(Shih et. al., 1997)	23
Figure 2.1.1.5	SFWMM v5.5 Grid Cell Elevation Values	24
Figure 2.1.2.1	1988 Land Use Map	26
Figure 2.1.2.2	2000 Land Use Map	27
	2050 Land Use Map	
Figure 2.1.2.4	Data Source for Vegetative Classes	29
Figure 2.1.2.5	Examples of Ridge & Slough II Landscape	32
Figure 2.1.2.6	Examples of Ridge & Slough III Landscape	32
Figure 2.1.2.7	Examples of Ridge & Slough IV Landscape	33
Figure 2.1.2.8	Examples of Ridge & Slough V Landscape	33
Figure 2.1.2.9	Example of Mixed Cattail and Sawgrass Landscape	34
Figure 2.2.1.1	Location of Rainfall Stations	37
Figure 2.2.2.1	Example of TIN-10 Estimation for Model Grid Cell	11
Figure 2.2.2.2	Grid Values of Annual Average Rainfall	12
Figure 2.2.2.3	Monthly mean and Standard Deviation for Rainfall	13
Figure 2.3.1.1	Selected K _r Values for 17 NOAA Stations with Long-Term Daily	
	Temperature Data	17
Figure 2.3.1.2	Estimated Annual Average Wet Marsh Potential Evapotranspiration (in/yr)	
	for a 2-mile x 2-mile Super-Grid Which Includes the SFWMM and	
	NSM Grids	48
Figure 2.3.2.1	Conceptual Representation of the Different Lake Okeechobee	
	Evapotranspiration Zones as Implemented in the South Florida Water	
	Management Model	
	KFACT as a Function of Water Table Location	
	2000 Fraction of Landscape Irrigation from Public Water Supply (FLI) Map	
	2000 Fraction of Landscape Irrigation from Wastewater Reuse (FLR) Map	
	2000 Fraction of Golf Course Irrigation from Wastewater Reuse (FGI) Map	53
Figure 2.4.2.1	Location of Grid (Source and Destination) Cells Used in Calculating Total	
	Head at Grid Cell (i,j) During Time Step t+1 as Implemented in the	
	Overland Flow Subroutine in the South Florida Water Management Model o	
Figure 2.4.2.2.1	Effective Roughness N Values for Mixed Cattail and Sawgrass	70

Figure 2.5.3.1	Canal-Levee Configuration Representing a Typical Transect Used in	
	Developing Empirical Levee Seepage Equations in the South Florida	
	Water Management Model	74
Figure 2.5.3.2	Sections or Transects Across the Major Levees Used to Formulate Levee	
	Seepage Equations in the South Florida Water Management Model	75
Figure 2.5.4.1	Surficial Aquifer Transmissivity Map for the South Florida Water	
	Management Model (v5.5)	79
Figure 2.5.5.1	Location of Grid Cells Used in Calculating Total Head at Grid Cell (i,j)	
	During Time Step t+1 as Implemented in the Groundwater Flow	
	Subroutine in the South Florida Water Management Model	83
Figure 2.5.5.2	Generalized Block Diagram of Surface-Subsurface Interaction in the	
	SFWMM	
Figure 2.7.2.1	Lake Okeechobee boundary conditions, SFWMM v5.5	94
_	Upper Kissimmee River Basin	
_	UISLTK Regression Analysis (Monthly)	
	TCNSQ Relationship Regression Analysis (Monthly)	
	TCNSQ Relationship Regression Analysis (Daily)	
Figure 2.7.3.1	SFWMM Gridded Boundary Conditions	. 101
	Schematic Representation of the L-3 Flow Locations	
Figure 2.7.3.3	S-190 in relationship to Seminole Big Cypress Reservation	. 104
Figure 2.7.3.4	Tidal Stations Used to Define Coastal Boundary Conditions for the	
	SFWMM	. 106
Figure 2.7.3.5	Mean monthly tidal data used to define the SFWMM tidal boundary	. 107
Figure 3.1.1.1	Lake Okeechobee Stage-Area-Storage Relationships	. 109
Figure 3.1.3.1	Lake Okeechobee Run 25 Regulation Schedule (adapted from U.S. Army	
	Corps of Engineers)	. 111
	WSE Regulation Schedule	
	WSE Decision Tree for Lake Okeechobee Discharges to WCAs	
	WSE Decision Tree for Lake Okeechobee Discharges to C-43 and C-44s	
	Schematic Diagram of Caloosahatchee Basin/Estuary Simulation Module	
_	Schematic Diagram of Caloosahatchee Basin/Estuary Simulation Module	
Figure 3.2.1.1	LOSA Basins around Lake Okeechobee	. 124
Figure 3.2.1.2	South Florida Water Management Model Grid Superimposed on Major	
	Basins in the Everglades Agricultural Area	. 125
Figure 3.2.1.3	Conceptual Diagram of the Hydrologic System in the Everglades	
	Agricultural Area as Represented in the SFWMM (adapted from Abtew	
	and Khanal, 1992)	
Figure 3.2.2.1	Conceptual Representation of an EAA Grid Cell in the SFWMM	. 127
Figure 3.2.2.2	Variation of Total Evapotranspiration, ET ₀ , as a Function of Depth	. 130
Figure 3.2.3.1	Canal-Structure Configurations Used in Calculating Canal Conveyance	
	Capacities for the Everglades Agricultural Area Algorithm in the South	
	Florida Water Management Model	. 139
	Location of Stormwater Treatment Areas	. 143
Figure 3.2.5.2	Flow Distribution within and Around the Everglades Agricultural Area with	
	Stormwater Treatment Areas Fully Constructed	
Figure 3.3.2.1	AFSIRS/WATBAL Conceptualization at Field Scale	. 147

Figure 3.3.2.2	AFSIRS/WATBAL Conceptualization of Field Scale to Basin Scale	
	Translation	
Figure 3.3.2.3	Single Basin Implementation of AFSIRS/WATBAL	148
Figure 3.3.3.1	Caloosahatchee (C43) Basin Implementation of AFSIRS/WATBAL	149
Figure 3.3.6.1	Relationship between TCNSQrev, TCNSQ and NLKSHOREdmd/ro	151
Figure 3.3.9.1	Lake Okeechobee Regulation Schedule with Supply-Side Management Line	154
Figure 3.4.1.1	Surface Water Management Basins in the Everglades: Water Conservation	
	Areas and Everglades National Park (adapted from Cooper and Roy, 1991)	156
Figure 3.4.1.2	WCA-1 Basin Boundary, Canals and Water Control Structures (adapted	
	from Cooper and Roy, 1991)	157
Figure 3.4.1.3	WCA-2A Basin Boundary, Canals and Water Control Structures (adapted	
	from Cooper and Roy, 1991)	159
Figure 3.4.1.4	WCA-2B Basin Boundary, Canals and Water Control Structures (adapted	
	from Cooper and Roy, 1991)	160
Figure 3.4.1.5	WCA-3A Basin Boundary, Canals and Water Control Structures (adapted	
	from Cooper and Roy, 1991)	162
Figure 3.4.1.6	WCA-3B Basin Boundary, Canals and Water Control Structures (adapted	
	from Cooper and Roy, 1991)	163
Figure 3.4.1.7	Everglades National Park Basin Boundary, Canals and Water Control	
	Structures (adapted from Cooper and Roy, 1991)	164
Figure 3.4.2.1	SFWMM Grid Cell Network with Model Boundary	166
Figure 3.4.2.2	Regulation Schedule for Water Conservation Area 1	168
Figure 3.4.2.3	Regulation Schedule for Water Conservation Area 2A	169
Figure 3.4.2.4	Regulation Schedule for Water Conservation Area 3A	170
Figure 3.4.2.5	Regulation Schedule for Water Conservation Area 1, 2A, and 3A	171
Figure 3.4.2.6	Example of Translation for Hydrograph Targets	179
Figure 3.4.2.7	Example of Truncation for Hydrograph Targets	179
Figure 3.4.2.8	Examples of Import Offset for Hydrograph Targets	180
Figure 3.4.2.9	Examples of Export Offsets for Hydrograph Targets	181
Figure 3.4.2.10	Potential Import and Export Trigger Sites from NSM	183
Figure 3.4.2.1	1 Flow Routing Associated with Example Triggers for Everglades	
	Rain-Driven Operations	184
Figure 3.5.2.1	Primary Structures Used in Making Water Supply Deliveries to the Three	
	Service Areas within the Lower East Coast	186
Figure 3.5.2.2	Hypothetical Canal Network Used to Explain Water Supply Needs	
	Calculations in the South Florida Water Management Model	187
Figure 3.5.2.3	Sequence of Water Supply Needs Calculations for the Hypothetical Canal	
	Network	191
Figure 3.5.3.1	Systems Diagram of Processes Simulated in the South Florida Water	
	Management Model for Irrigated Cells within the Lower East Coast	
	Service Area	195
Figure 3.5.4.1	Location of Key Trigger Cells in the South Florida Water Management	
	Model Used to Trigger Water Restrictions in the Lower East Coast	
	Developed Area	198

Figure 3.5.5.1 Distribution of Annual Average Public Water Supply Pumpage (1996-	2000)
in the Lower East Coast Based on the South Florida Water Manager	ment
Model Grid Network	201
Figure 3.6.1.1 Example Trigger Lines for Proposed Lake Okeechobee Aquifer Storag	ge and
Recovery	
Figure 3.6.1.2 Measles Map Showing Spread of ASR Wells (adapted from ASR Syst	ems
LLC, 2004)	207
Figure 3.6.2.1 Logarithmic Relationship between EAA 9-Station Average Rainfall for	r
Water Years 1995-2000 (adapted from Abtew, 2002)	209
Figure 3.6.2.2 Annual Time Series of EAA 9-Station Average Rainfall from BMP Ru	ıle 210
Figure 3.6.2.3 SFWMM Grid Values of Initialized Stage	213
Figure 3.6.2.4 Historical Traces of Stage Predictions in Lake Okeechobee	214
Figure 3.6.2.5 Historical Traces Re-Initialized to Starting Conditions for Lake Okeec	hobee 214
Figure 3.6.2.6 Conditional and Unconditional PA Stage Predictions for Lake Okeech	obee 215
Figure 4.1.1.1 Miami River Basin Unsaturated Zone Storage Triggers for Runoff and	Į
Supplemental Flow as Implemented in the SFWMM	220
Figure 4.1.2.1 Calibrated Annual Runoff and Supplemental Flow for the EAA	221
Figure 4.1.2.2 Verified Annual Runoff and Supplemental Flow for the EAA	
Figure 4.1.2.3 Calibrated Daily Runoff and Supplemental Flows for the EAA	222
Figure 4.1.2.4 Verified Daily Runoff and Supplemental Flows for the EAA	222
Figure 4.1.2.5 Calibrated Daily Historical and Simulated EAA Runoff	223
Figure 4.1.2.6 Verified Daily Historical and Simulated EAA Runoff	223
Figure 4.1.2.7 Calibrated Daily Historical and Simulated EAA Supply	224
Figure 4.1.2.8 Verified Daily Historical and Simulated EAA Supply	
Figure 4.1.2.9 Calibrated Flow Duration – Daily EAA Runoff	
Figure 4.1.2.10 Verified Flow Duration – Daily EAA Runoff	
Figure 4.1.2.11 Calibrated Flow Duration – Daily EAA Supply	226
Figure 4.1.2.12 Verified Flow Duration – Daily EAA Supply	
Figure 4.1.2.13 Calibrated Mean Monthly Runoff and Supply Comparison	
Figure 4.1.2.14 Verified Mean Monthly Runoff and Supply Comparison	
Figure 4.1.2.15 Calibrated Monthly Runoff and Supplemental Flows for the EAA	
Figure 4.1.2.16 Verified Monthly Runoff and Supplemental Flows for the EAA	
Figure 4.1.2.17 Calibrated Monthly Historical and Simulated EAA Runoff	
Figure 4.1.2.18 Verified Monthly Historical and Simulated EAA Runoff	
Figure 4.1.2.19 Calibrated Monthly Historical and Simulated EAA Supply	
Figure 4.1.2.20 Verified Monthly Historical and Simulated EAA Supply	
Figure 4.2.1.1 Location of Stage Calibration and Verification Sites	
Figure 4.2.1.2 Locations of Flow Calibration and Verification Sites	
Figure 4.2.2.1 Calibration Correlation	
Figure 4.2.2.2 Verification Correlation	
Figure 4.2.2.3 Calibration Bias	
Figure 4.2.2.4 Verification Bias	
Figure 4.3.1.1 Measured vs. Modeled Caloosahatchee Demand	
Figure 4.3.1.2 Seasonal Variability in Caloosahatchee Demand	
Figure 4.3.1.3 Time Series of Monthly Caloosahatchee Demand and Accumulation	
Figure 4.3.1.4 Measured vs. Modeled Caloosahatchee Runoff	

Figure 4.3.1.5 Seasonal Variability in Caloosahatchee Runoff	255
Figure 4.3.1.6 Time Series of Monthly Caloosahatchee Runoff and Accumulation	256
Figure 4.3.2.1 Measured vs. Modeled Brighton/Istokpoga Demand	259
Figure 4.3.2.2 Seasonal Variability in Brighton/Istokpoga Demand	259
Figure 4.3.2.3 Time Series of Monthly Brighton/Istokpoga Demand and Accumulation	260
Figure 4.3.3.1 Seasonal Variability in Feeder Canal Basin Runoff	265
Figure 4.3.3.2 Time Series of Monthly Feeder Canal Basin Runoff and Accumulation	265
Figure 4.3.3.3 Seasonal Variability in Feeder Canal Basin Demand	266
Figure 5.2.1 Sensitivity in terms of Bias to Variation of Wetland Potential	
Evapotranspiration (WPET) in WCAs	269
Figure 5.2.2 Sensitivity in terms of RMSE to Variation of Wetland Potential	
Evapotranspiration (WPET) in WCAs	270
Figure 5.2.3 Sensitivity Percentile in terms of Bias to Variation of Wetland Potential	
Evapotranspiration (WPET) in WCAs	
Figure 5.2.4 Components of the Sensitivity Matrix for BCNP	
Figure 5.2.5 Components of the Sensitivity Matrix for ENP	273
Figure 5.2.6 Components of the Sensitivity Matrix for WCAs	274
Figure 5.2.7 Components of the Sensitivity Matrix for LEC SA1	
Figure 5.2.8 Components of the Sensitivity Matrix for LEC SA2	275
Figure 5.2.9 Components of the Sensitivity Matrix for LEC SA3	276
Figure 5.2.10 Components of the Sensitivity Matrix for Canals	
Figure 6.2.1 Simulated Versus Observed Stages for Gage G1502 in ENP	290
Figure 6.2.2 Simulated Versus Observed Stages for Gage G2030 in ENP	291